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A systematic approach for constructing high order spline interpolation methods is pro-
posed for fields known on regular, rectangular grids. These interpolation methods are
tested in tracking trajectories of particles submitted to a force that derives from a potential
known on a grid. The interplay between the time advancement scheme and the spatial
interpolation is studied in detail and it is shown how the order of the trajectory solver is
directly affected by the order of the spline interpolation. It is also shown how an interpo-
lation method that preserves topological properties of physical fields can be better
exploited with these higher order spline approximations.
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1. Introduction

The correct description of particle transport is important in a huge number of problems encountered by physicists [1–3],
including geophysicists [4] and astrophysicists [5], chemists and engineers. Particle transport may be affected by interactions
between the particles themselves as well as by interactions with their environments. In the present study, only the case in
which transport can be considered as fully determined by the influence of the environment, and the interactions between the
particles are neglected, is considered. The approximation of non-interacting particles has an extremely wide range of appli-
cations, such as the dispersion of pollutants in the atmosphere or in rivers and oceans, the acceleration of charged particles in
complex electromagnetic fields in astrophysical systems [5–7] as well as the estimation of particle loss in magnetic confine-
ment devices. Various mathematical approaches can be considered to describe these phenomena [1]. Hydrodynamic balance
equations can be solved to describe the influence of the velocity field on a concentration of passive particles. Kinetic ap-
proaches for the evolution of the particle velocity distribution function using Fokker–Planck type of equations can also be
considered. However, in certain cases, it is interesting to consider the direct description of an ensemble of particle trajecto-
ries. The mathematical framework is then quite easy to establish and, considering only classical mechanics (i.e. disregarding
quantum and relativistic effects), the evolution of the particles is simply described by Newton’s second law [3,4]. The forces
acting on the particles have of course to be known if the problem has to be solved either analytically or numerically. In
practice, these forces are either known exactly and an analytical expression can be provided, or they are known in a
statistical sense and stochastic processes have to be introduced such as in the Brownian motion. In certain cases however,
the external forces are known from numerical simulations [6–10]. For instance, test particles in a fluid could experience a
. All rights reserved.

lasma Physics, Université Libre de Bruxelles, Campus Plaine, CP 231, B-1050 Brussels, Belgium. Tel.: +32

u), bteaca@ulb.ac.be (B. Teaca), dcarati@ulb.ac.be (D. Carati).

http://dx.doi.org/10.1016/j.jcp.2009.10.046
mailto:clalescu@ulb.ac.be
mailto:bteaca@ulb.ac.be
mailto:dcarati@ulb.ac.be
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


C.C. Lalescu et al. / Journal of Computational Physics 229 (2010) 5862–5869 5863
friction velocity that is proportional to the difference between the particle and the fluid velocities. If the fluid velocity is de-
scribed by a Navier–Stokes solver, the friction force is derived from numerical simulations. Also, if a charged particle is inter-
acting with a complex electromagnetic field, both the electric and the magnetic fields entering the Lorentz force are
sometimes obtained from numerical simulations of the Maxwell equations. In these systems, it is required to interpolate
the forces at points in space along the particle’s trajectory, that do not necessarily fall on the grid nodes used to compute
the forces. The main purpose of the present study is to evaluate the coupling between the various time integration schemes
used to follow the particles and the space interpolation schemes used to estimate the forces acting on these particles.

An important aspect is of course the order of the numerical time integration scheme. It should be noted however that
additional constraints might have to be considered. For instance, if the particle is submitted to a force that derives from
an energy potential, total energy conservation might be a more important property to be reproduced by the time integration
scheme. Also, if the force contains a velocity field describing an incompressible flow or a magnetic field, it might be crucial
that the interpolation scheme preserves the divergence-free condition of the field [4].

The discussion presented here is limited to force fields that are represented on a uniform, rectangular spatial grid,
particularly relevant to the case of fluid dynamic or magneto-hydrodynamic pseudo spectral simulations as in [6,10,11].
The study is focused on the construction and the implementation of a hierarchy of spline interpolations. These spline
interpolation methods are applied to a simple Hamiltonian system, for which the exact expression of the force is also
available. The method is however applicable to any numerical simulations of physical or virtual particles in a discretized
field, including first order ordinary differential equations such as those used to describe field lines instead of particle
trajectories.

2. Theoretical framework

2.1. Physical problem

As a case study, the motion of a unit-mass particle is considered in a given potential V. The Hamiltonian describing this
system has the simple form
Hðp; rÞ ¼ 1
2

p2 þ VðrÞ; ð1Þ
where p is the particle’s momentum and r its position. This system evolves according to Hamilton’s equations:
dr
dt
¼ p;

dp
dt
¼ FðrÞ; ð2Þ
where the force is given by F ¼ �rVðrÞ. Since V depends explicitly only on r, the Hamiltonian (1) is separable. The separa-
bility allows for a relatively easy way of constructing explicit, high order, symplectic solvers [12–14]. In particular, two clas-
ses of time integration schemes for solving the Hamilton equations will be considered: symplectic composition methods
(CM), and the implicit Gauss–Runge–Kutta (GRK) schemes that are actually symplectic for more general non-separable
systems.

From the evolution equations (2), it is obvious that the numerical simulation of the particle trajectory requires the knowl-
edge of the force field F at each point r. Typically, the force field, or any other field of interest for that matter, is known only
on the nodes of a grid. The field values at the point r are approximated by an interpolation method and labelled bF. The influ-
ence of the interpolation method on the accuracy of the time integration scheme is important. For instance, considering a
first order ordinary differential equation dx=dt ¼ f ðxÞ and the Taylor expansion of its solution
xðtÞ ¼ xð0Þ þ tf ðxÞjxð0Þ þ
t2

2
f 0ðxÞjxð0Þ þ � � � þ

tm

n!
f ðm�1ÞðxÞjxð0Þ þ � � � ; ð3Þ
the expansion for any mth order solver should coincide with this Taylor expansion up to the mth order. However, if the
order m derivative of the force field is ill-defined, any solver will have at most a global order m. Although this property is
quite obvious, it has been often overlooked when numerical integration schemes are coupled with interpolation methods.
Indeed, interpolation methods often produce force field bF that are not infinitely differentiable even if the original field
itself was infinitely differentiable. For instance, in the following subsection, spline approximations are considered with
continuous mth order derivatives but for which the derivatives of order mþ 2 are ill-defined. Specifically, the mþ 1 order
derivatives are continuous almost everywhere and bounded, whereas the mþ 2 order derivatives are not bounded at their
discontinuities.

2.2. Spline approximations

In order to simplify the notations, the spline interpolation is first discussed for a scalar field f ðxÞ in a one-dimensional
space. The space dimension is actually not important in this construction. In most practical cases, the field will be obtained
from three-dimensional fluid, magneto-hydrodynamic or Maxwell equations solver. In that case, the information related to
the force F is assumed to be obtained from a simulation on a rectangular, three-dimensional, uniform grid [6,8,9]. Consid-
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ering the one-dimensional problem, the values of f ðxÞ are assumed to be known on a grid, with the constant distance D be-
tween the nodes. The interpolation scheme aims to provide an approximation of f ðxÞ for a given x that belongs to an interval
½x‘; x‘þ1�. Without loss of generality, the variable x can be translated by �x‘ and expressed in unit of D, so that we can assume
that x lies in the interval [0,1]. The spline is given by the nth order polynomial:
sðnÞðxÞ ¼
Xn

k¼0

aðnÞk xk: ð4Þ
For a Hermite spline interpolation, the values of sðnÞ and of its derivatives up the order m � ðn� 1Þ=2 must coincide with
those of the original function on the nodes x ¼ 0 and x ¼ 1:
dlsðnÞ

dxl ð0Þ ¼ dlf
dxl ð0Þ;

dlsðnÞ

dxl ð1Þ ¼ dlf
dxl ð1Þ;

8<: l ¼ 0; . . . ;m: ð5Þ
By solving the system of Eq. (5) we can find the coefficients aðnÞk depending on the values on the nodes of the function and its
derivatives: f ð0Þ; f ð1Þ; f 0ð0Þ; f 0ð1Þ; . . .:
aðnÞk ¼
Xm

l¼0

X1

i¼0

cðnÞkli f ðlÞðiÞ; ð6Þ
where cðnÞkli are numerical coefficients fixed for a given n. This approach is used in [15], where exact derivatives of the field are
used to construct a cubic spline interpolation. Computing the coefficients aðnÞk is mostly useful for static fields. For dynamic
fields or large n, this approach is computationally prohibitive, so an alternative method is considered here. After introducing
the solution (6) into (4) and expressing the derivatives using centred differences, the spline can be rewritten as:
sðn;qÞðxÞ ¼
Xgþ1

i¼�g

f ðiÞbðn;qÞi ðxÞ; ð7Þ
where q ¼ 2g þ 2 is the number of grid nodes needed to construct the approximation and each bðn;qÞi ðxÞ is generally a poly-
nomial of degree n in x. The formula (7) is valid for an x 2 ½0;1�, and it is basically a weighted sum of the values of f on the
neighbour grid nodes �g;�g þ 1; . . . ;0;1;2; . . . ; g � 1; g; g þ 1. The same formula is applied for other intervals, by shifting the
nodes accordingly along the grid. At the grid boundaries, this formula needs to be adapted. In the tests reported hereafter,
periodic boundary conditions were used and the formula is then easily adapted by using f ði� NÞ ¼ f ðiÞ if N is the number of
grid points. However, for other types of boundary conditions, adapting the formula (7) may very well become problem
dependent. For q ¼ 4, the following centred differences expression for the first and second order derivatives can be used
(in order to emphasise the order of the expansion in terms of D, un-normalised units for the position x are restored only
in the following well-known centred difference formulae (9)–(13)):
f 0ðxÞ ¼ f ðxþ DÞ � f ðx� DÞ
2D

þ OðD2Þ; ð8Þ

f 00ðxÞ ¼ f ðxþ DÞ � 2f ðxÞ þ f ðx� DÞ
D2 þ OðD2Þ: ð9Þ
For q ¼ 6, fourth order derivatives can be computed at most:
f 0ðxÞ ¼ �f ðxþ 2DÞ þ 8f ðxþ DÞ � 8f ðx� DÞ þ f ðx� 2DÞ
12D

þ OðD4Þ; ð10Þ

f 00ðxÞ ¼ �f ðxþ 2DÞ þ 16f ðxþ DÞ � 30f ðxÞ þ 16f ðx� DÞ � f ðx� 2DÞ
12D2 þ OðD4Þ; ð11Þ

f ð3ÞðxÞ ¼ f ðxþ 2DÞ � 2f ðxþ DÞ þ 2f ðx� DÞ � f ðx� 2DÞ
2D3 þ OðD2Þ; ð12Þ

f ð4ÞðxÞ ¼ f ðxþ 2DÞ � 4f ðxþ DÞ þ 6f ðxÞ � 4f ðx� DÞ þ f ðx� 2DÞ
D4 þ OðD2Þ: ð13Þ
The computation of the b polynomials demands some care but it is straightforward. The bð5;4Þi s are given as an example:
bð5;4Þ�1 ðxÞ ¼
1
2
ðx� 1Þ3xð2xþ 1Þ; ð14Þ

bð5;4Þ0 ðxÞ ¼ �1
2
ðx� 1Þð6x4 � 9x3 þ 2xþ 2Þ; ð15Þ

bð5;4Þ1 ðxÞ ¼ 1
2

xð6x4 � 15x3 þ 9x2 þ xþ 1Þ; ð16Þ

bð5;4Þ2 ðxÞ ¼ �1
2
ðx� 1Þx3ð2x� 3Þ: ð17Þ
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A simple D-dimensional generalization of the spline can easily be constructed:
sðn;qÞðx1; x2; . . . ; xDÞ ¼
Xgþ1

i1 ;...;iD¼�g

f ði1; . . . ; iDÞ
YD

j¼1

bðn;qÞij
ðxjÞ

 !
: ð18Þ
It can be shown that the cross-derivatives for this field are automatically continuous:
YD

j¼1

@

@xj

� �lj
 !

sðn;qÞ 2 Cm�maxfljg; ð19Þ
whenever m P maxfljg. Here, C‘ represents the set of functions that are continuous and have continuous derivatives up to
the ‘th order. The formula (18) allows for a relatively easy parallelization of the computation. In practice, if the field is split
between several processors along one of the coordinates, the formula can also be split along that coordinate.

To summarise, considering a field f known only on a regular grid, the Hermite approach discussed in this section allows to
construct a spline approximation, based on polynomials of order n, that uses q grid points in each direction. The formal oper-
ator that transforms a field f into its spline approximation f̂ will be named (for later reference) Sðn;qÞ:
f̂ ¼ Sðn;qÞf : ð20Þ
2.3. Force representation

In the test case considered here (1) and (2), the force has been deliberately assumed to derive from a potential energy.
This property is actually not required by the time integration schemes nor by the space interpolation methods we are con-
sidering. However, it allows the investigation of two very important features of various physical systems. First, it gives a di-
rect access to the total energy of the particle. Hence, the numerical schemes can be tested not only in terms of the accuracy of
the solution but also in terms of their ability to conserve the total energy. Second, and this is closely related to the previous
point, the force is curl-free:
r� FðrÞ ¼ �r� ðrVðrÞÞ ¼ 0: ð21Þ
The numerical schemes, and here this concerns only the space interpolation methods, can also be tested in terms of their
ability to preserve this property. For instance, the operator Sðn;qÞ can be applied directly to the potential and then the force
can be derived from the interpolated potential:
~FðrÞ ¼ �rðbV Þ ¼ �rðSðn;qÞVÞ: ð22Þ
A similar approach was first suggested in [4] where, in order to obtain a divergence-free interpolation of the magnetic field,
the vector potential is interpolated with cubic splines and its derivatives are used for the magnetic field. The expression foreFðrÞ can be obtained efficiently by using the pre-computed derivatives of the b polynomials. The advantage of this approach
here is that the expression for eFðrÞ is automatically curl-free. However, the components of the forcing have a smaller number
of continuous derivatives than the direct approximation:
bFðrÞ ¼ �Sðn;qÞFðrÞ ¼ �Sðn;qÞrðVÞ: ð23Þ
The choice between smoother interpolations for the force or an exactly curl-free expression is discussed in the next section.

3. Numerical results

3.1. Test case

The test case that is presented here corresponds to a very simple expression for the potential:
Vðx; y; zÞ ¼ cosðxÞ cosðyÞ þ cosðyÞ cosðzÞ: ð24Þ
Obviously, since the analytic expression for the potential is known, the exact expression for the force is also known and the
interpolation schemes can then be easily assessed. The interpolation schemes are built by assuming that the fields are rep-
resented in a box of length 2p, with periodic boundary conditions. The resolution chosen for the spatial grid is 6 nodes per
direction, which is more than the minimum needed to capture the exact Fourier expansion for the fields without loss of
information due to discretization.

Particles are placed at random initial positions chosen under the condition that their potential energy is less than 1/2.
Then, their velocity is also chosen with a random direction but with an amplitude that yields to a total energy exactly equal
to 1/2. In all the tests presented in the following, the number of particles is always N ¼ 1000. All results are given in non-
dimensional units. The main advantage of choosing an ensemble of particles with the same total energy is that the statistics
are not dominated by just a few trajectories. Each particle can then be seen as ‘‘statistically equivalent” to the others.
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Such an example is, of course, extremely simple. It has the major advantage of being characterised by very few free
parameters and its simulation can be reproduced very easily. It must be stressed however that the coupling between the
time integration schemes and the spline interpolation methods has been investigated for various other examples with
increasing complexity. The same conclusions have been reached for all potentials and it has been decided to focus the pres-
ent report on the simple example (24).

3.2. Limit order for solvers

The first important result of the numerical tests is the strong influence of the interpolation method on the global order of
the solver. The order is estimated by computing the particle trajectories from t ¼ 0 to t ¼ T with a series of decreasing time-
steps sk. The final values of phase-space variables for the ith particle form the final state of the particle
nðkÞi ðTÞ ¼ ðr

ðkÞ
i ðTÞ;p

ðkÞ
i ðTÞÞ, which depends on the time step sk. Comparing these final states for different time-steps gives an

estimate of the accuracy of the numerical scheme:
Fig. 1.
all case
eðkÞi � kn
ðkþ1Þ
i ðTÞ � nðkÞi ðTÞk: ð25Þ
For this test, a value of T ¼ 10 for the total time is sufficiently long to obtain the global order for all solvers considered. In
Figs. 1 and 2, the logarithm of the average error eðkÞ ¼ heðkÞi i, computed over the ensemble of particles, is plotted against the
logarithm of the time-step sk. The same 8th order composition method, by Kahan and Li [16], is used to for the time advance-
ment scheme with various splines approximations for the force. The intervals containing 90% of the errors eðkÞi are also shown
in the figures.

The slopes obtained should be at most equal to 8. In the simulations reported in these figures, this upper limit is only
observed for the analytical form of the force which corresponds to the Sð1;1Þ spline. For the spline of order n, the global order
of the numerical scheme appears to be approximately ðn� 1Þ=2þ 2 when using the bF force approximation, and ðn� 1Þ=2þ 1
when using eF. Hence, the order of the solver significantly decreases with decreasing order of the spline interpolation scheme.
In particular, the linear interpolation, Sð1;2Þ, used extensively in the literature [6,8,9], yields a global solver order equal to 2.

To emphasize the influence of the spatial interpolation method on the global order of the particle trajectory solver, the
average error eðkÞ is computed for various time integration schemes. The CM4 solver by Blanes and Moan [17], the CM6
and CM8 solvers by Kahan and Li [16] and the implicit GRK4 and GRK6 solvers [12] are used in combination either with
the analytical expression for the force Sð1;1Þ in Fig. 3 or with the spline Sð7;6Þ approximation in Fig. 4. This particular choice
of spline allows for a maximal order of 5 for the solvers, when using bF. For this reason, the 4th order solvers recover the slope
4 while all the other solvers, of higher orders, are reduced to 5.

3.3. Energy conservation

The energy conservation can be used to introduce another measure of the solver accuracy by computing the quantity:
eeðtÞ ¼
1
2

p2
i ðtÞ þ bV ðriðtÞÞ �

1
2

p2
i ð0Þ þ bV ðrið0ÞÞ

� ����� ����� �
; ð26Þ
where, again, the average is performed over all the particles. For this type of diagnostics, longer runs are necessary and the
particle trajectories have been followed from t ¼ 0 to t ¼ T ¼ 1000 with a time-step of 2�3, using the CM4 solver from Blanes
Average error ðeÞ versus the time-step ðsÞ, using various splines, for the bF force approximation. The same 8th order composition method is used for
s. The lines represent time-step power-laws and are shown for reference.



Fig. 2. Average error ðeÞ versus the time-step ðsÞ, using various splines, for the eF force approximation. The same 8th order composition method is used for
all cases. The lines represent time-step power-laws and are shown for reference.

Fig. 3. Average error ðeÞ versus the time-step ðsÞ, using the exact formula for the force, Sð1;1Þ . Results for the 4th and 6th order Gauss–Runge–Kutta (GRK)
solvers and the 4th, 6th and 8th order composition methods (CM) are shown.

Fig. 4. Average error ðeÞ versus the time-step ðsÞ, using the Sð7;6Þ spline for the bF force approximation. Results for the 4th and 6th order Gauss–Runge–Kutta
(GRK) solvers and the 4th, 6th and 8th order composition methods (CM) are shown.
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Fig. 5. Energy error ee versus time for various spline approximations for bF.

Fig. 6. Energy error ee versus time for various spline approximations for eF.
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and Moan [17]. Only the interpolation method is changed. Results are reported in Figs. 5 and 6. The energy error is constant
when the exact expression for the force is used, as expected [12–14]. This indicates that the time integration scheme is not
responsible for a possible lack of energy conservation. The comparison of the figures shows that energy conservation is much
better when the spline approximations are used on the energy potential to produce eF than when it is applied directly to the
forcing to yield bF. Moreover, the gain in accuracy is much more important when the spline order is increased for eF than for bF.

4. Conclusions

A systematic approach for constructing nth order spline interpolation methods has been proposed. These interpolation
methods have been discussed for the simple case of tracking the trajectories of particles submitted to a force derived from
an energy potential.

It has been shown that the effective order of the trajectory solver is directly affected by the order of the spline interpo-
lation, as expected. However, this effect may be reduced by using finer grid resolutions for the fields. Indeed, in that case,
because the discontinuity in the mþ 1 order derivative is decreased, the measure of the positions for which the mþ 2 deriv-
ative explodes and affects the order of the solver is reduced. Except in the limit of very fine grids, the order of the solver
remains generally the same even if the interpolation error may be reduced in magnitude. It must also be stressed that
increasing the resolution is not always an option. In particular if the fields are obtained from high resolution turbulence sim-
ulations, a further increase of the number of grid points may be impractical.

We also show how the qualitative aspects of the physics involved can be better reproduced by implementing an alterna-
tive interpolation method, suggested in [4], and using this method in conjunction with high order splines. It must also be



C.C. Lalescu et al. / Journal of Computational Physics 229 (2010) 5862–5869 5869
recognised that the iso-surfaces fr 2 R3jVðrÞ ¼ ag and fr 2 R3jbV ðrÞ ¼ ag can have different topological properties, as parti-
cles with energy a could be trapped in V but not in bV or vice versa. It is therefore important to evaluate how important these
trapping effects are before choosing the interpolation method. However, since an entire hierarchy of splines interpolation
methods is available, increasing the number of grid points used to reach an acceptable degree of the errors for the problem
considered is always feasible.
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